

How to contribute to eZ Publish using GIT

By André Rømcke
Collaboration with Nicolas Pastorino, Robin Muilwijk, Ole Marius Smestad

 Reviews by Gunnstein Lye, Damien Pobel, Paul Borgermans, Ricardo Goulart
& João Pingo

1 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://share.ez.no/

Index
 1 Goal description.. 3
 2 Introduction... 3
 3 Pre-requisites and target population.. 3
 4 The different ways of contributing... 3
 5 How to collaborate... 4

CLA / coding standards...5
PHP..5
Templates..5
CSS..5
JavaScript..6
Browser testing...6

 6 Installing GIT and setting-up Github.. 6
 7 “Forking” eZ Publish... 6
 8 Cloning eZ Publish.. 7

Cloning read-only..7
Cloning with write access on Fork...7

 9 Working with topic branches... 8
Checkout...8
Make changes..9
Commit...9
Push..10
Add comment on issue..10
Pull Request..10
Tagging a “finished” branch (optional)...11

 10 Some notes on rebase.. 11
 11 Merging an ‘alien’ topic branch... 11
 12 Working with GIT patches.. 12
 13 Conclusion.. 12
 14 Resources... 12
 15 About the authors... 13
 16 License choice... 13
 17 Appendix : GIT/Github jargon.. 13

Git terms:...13
Github terms:..13

2 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://share.ez.no/

 1 Goal description
At the end of this tutorial, you should be able to contribute to eZ Publish Community Project, eZ Publish’s
kernel developed by both eZ and the eZ Community. You will learn how to use git and github in the scope of
this participation, and be given the bunch of best-practices to follow for smooth collaboration.

 2 Introduction
With the change to GIT/ Github earlier this year, the 4.4 release and the future change to how we manage our
eZ Publish Community Project (CP), now is a good time to learn how to get eZ Publish from GIT and
contribute on solving issues and innovating.

Collaborating on eZ Publish development is not really hard or too time-consuming if we take advantage of the
tools that we have at hand, and GIT + Github really shines here. First of all it’s a way for you to make sure the
bug is fixed more quickly while at the same time making sure you are properly attributed for your work.

The Community Project symbolizes eZ’s core value of openness in making contribution to eZ Publish kernel
happen. Time to roll your sleeves up and make eZ Publish a bit of your own.

 3 Pre-requisites and target population
This post is aimed at developers and technical users who want to be able to make changes to eZ Publish and
share them with others, and in the end the change is bound to be integrated into the product.

If you’re just here to find out how to clone / “checkout” eZ Publish from GIT, skip to “Cloning read only”,
and optionally “Installing GIT and setting up Github”.

Note: This document should be considered as a living document, parts of it can be moved to GitHub wiki at
any point for easier maintenance and for updates as the community go forward. This is especially true for
coding standards and commit conventions.

 4 The different ways of contributing
While waiting for the upcoming changes to how development is done (soon decided upon by the Community
Project Governance), here are your current options when it comes to contributing to eZ Publish Community
Project :

• Reporter - Issue reporter, creates issues in issue tracker (http://issues.ez.no/ezpublish)
• Tester - Provide reduction test cases, reproduce and confirm issues
• Collaborator - Contribute code with unit tests and api doc on issues created by yourself or others. A

patch could also just fix api doc, improve unit tests or other non functional stuff, in that case there
doesn’t need to be an issue for it.

As you can see, you don’t necessarily need to be a developer to contribute to an open source project, and same
goes for eZ Publish Community Project. The whole “Reporting issues > Reproduce and confirm issue > Adding
some more info on steps to reproduce > Finding some more information on what triggers the issue“ process, is

3 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://share.ez.no/blogs/ez/ez-publish-community-project-governance-structure-and-role-are-now-final
http://share.ez.no/blogs/ez/ez-publish-community-project-governance-structure-and-role-are-now-final
http://share.ez.no/

of tremendous help and makes sure that issues are looked at more quickly. But if you are a developer, it will be
looked at even more quickly if there is already a fix for it...read on !

 5 How to collaborate
From a bird-eye view, there are two workflows for contributing code. The first one is similar to how it is done
with SVN:

1. Do changes > 2. Create patch > 3. Reset your checkout > 4. Upload somewhere

And then iterate the whole process starting by applying the latest patch if there are more changes to be made.

But that is not really taking advantage of GIT and Github, so to do that we’ll promote the Github workflow in
this article:

1. Fork > 2. Create topic branch > 3. Do changes + Commit > 4. Push

Step How many
times do I do

this ?

What is it exactly ?

1. Fork Once Creating a copy of the main eZ Publish repository,
logically linked with the original one. The GIT way. All
it takes is one click.

2. Create topic branch For every topic
you address
(bug-fix,
feature)

Keeping your development efforts in a clean space in
your GIT version of eZ Publish. Lets you work on other
parts of eZ Publish if you want to, with no conflict.
Branching is seamless with GIT.

3. Do changes + Commit At least once
per topic

Make changes, commit, and repeat if you want to do
several independent changes.

4. Push At least once
per topic

Synchronizing your local GIT clone with your account
on github. After you have pushed you can ask people
for feedback on your commits and then re-iterate 2
and 3 until you are happy with the state of your
branch, at that point you can create a “Pull Request”
(see further below).

5. Emit a pull request At least once
per topic

Once satisfied with your bug-fixing or feature
development job, sending your changes back to the
main eZ Publish GIT repository, so that others can see
them or elaborate on them. This happens on Github,
and is equivalent to asking the ‘ezsystems’ user to
merge in your changes.

4 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://share.ez.no/

Locally you can iterate #3 several times before you push, keeping in-dependant changes separate from each
other. After you have pushed you can ask people for feedback on your commits and then re iterate 2 and 3 until
you are happy about the state of your branch, at that point you can create a “Pull Request” on Github asking
the ‘ezsystems’ user to merge in your changes.

As you could notice we start using the GIT/Github jargon here. If you are not super acquainted with it, we
recommend to read the appendix section.

CLA / coding standards
Make sure you have signed the CLA (Contributor Licensing Agreement), we cannot accept code contributions
without it:
http://share.ez.no/community-project/contributor-licensing-agreement-cla
We are considering easier ways for you to sign it, but for now, a scan of the signed, printed-out version, sent
through email to community@ez.no is good.

Also make sure you follow our coding standard to save time on several unnecessary review rounds. For
instance, always use 4 spaces instead of tabs for indenting. Here are details:

PHP
For PHP you can follow the eZ Components / Apache Zeta Components coding standard :
http://incubator.apache.org/zetacomponents/community/implementation.html
With some notable differences: class name prefix is ‘ezp’ for new classes, use ‘eZDebug’ for error, warnings,
notices, strict errors and debug statements instead of ‘trigger_error’ and ‘Component configuration’ / ‘Directory
structure’ does not really apply.
Also for exceptions, use with caution, a document / wiki is in the works to define exception hierarchy and it’s
going to inherit from PHP/SPL exceptions. Make sure your code works on PHP 5.2 and up, and does not use
deprecated functionality.

Templates
Make sure your html validates as html5 and xhtml traditional (in that order when they contradict each other), in
the future we will most likely aim for xhtml5 (html5 using XML rules for simplified parsing). The template code
itself should not use deprecated functionality and be properly indented.

CSS
Follow CSS 2.1 spec and only use CSS 3.0 for visual enhancements so there are no loss of functionality or
major display regressions on older clients, including IE6.

5 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://www.w3.org/TR/css3-roadmap/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/html5-diff/#absent-attributes
http://www.w3.org/TR/html5-diff/#absent-elements
http://www.w3.org/TR/html5-diff/#changed-attributes
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/html5/
http://validator.w3.org/
http://php.net/manual/en/migration53.deprecated.php
http://ezcomponents.org/contributing/coding_standards
mailto:community@ez.no
http://share.ez.no/community-project/contributor-licensing-agreement-cla
http://share.ez.no/

JavaScript
Follow the official EcmaScript (ES) standard, do feature detection and not browser detection to fallback when
browsers do not support [ES] features, but preferably use available functionality in jQuery or YUI which is
already doing these things for you. Be unobtrusive (separate html and js code and enhance the html using
general CSS selectors progressively meaning basic functionality is still maintained if it fails), and for jQuery /
YUI3, use ezjscore.

Browser testing
We more or less follow Yahoos A-Grade browser list, with one exception, we don’t spend time on getting out
interfaces to look the same in older browsers, it needs to be functional, but not pixel perfect.
As a simple rule test in latest stable version of FireFox, Chrome/Safari and IE in addition to IE 6.0. When IE 9.0
is stable start testing in that as well, but as it behaves closer to how upcoming FireFox / Web-kit versions do,
it’s not as important to test as 6.0 and 8.0 (for now).
As for IE 6.0, attention to who your customers are should be taken, but in general we plan to stop testing in IE
6.0 for future products when it dips bellow 10% browser share, and for current products when it’s well bellow
5% if current browser share trends continue at the same pace. Considerations for testing on mobile browsers
will be defined later, as the mobile browser market is much more fragmented, it will require a much larger
discussion.

 6 Installing GIT and setting-up Github
This post will demonstrate GIT using shell (command line). This is mainly because most of the visual GUI’s are
not good enough yet at the time of writing (end of 2010, beginning of 2011), and they act fairly differently.

Documentation on installing GIT for any platform (even Windows!) and setting up Github is best explained on
Githubs excellent help pages: http://help.github.com/
There are also some useful links and comments on the earlier share.ez.no blog post: “eZ running on GIT”

 7 “Forking” eZ Publish
If you would like to make some changes to eZ Publish like proposing a fix for a issue directly on Github, click on
the fork button. This will create a fork of eZ Publish on your own account page (yes, this implies you created
your github account beforehand. This is free).

Note: the fork will not update itself with changes done in the original repository, this is done by pulling in
changes and pushing it to your fork (how to do this is explained a bit below).

6 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://share.ez.no/blogs/ez/ez-running-on-git
http://help.github.com/
http://www.quirksmode.org/blog/archives/2009/10/there_is_no_web.html
http://www.alistapart.com/articles/smartphone-browser-landscape/
http://www.slideshare.net/bryanrieger/rethinking-the-mobile-web-by-yiibu?from=ss_embed
http://www.netmarketshare.com/browser-market-share.aspx?qprid=3
http://blogs.msdn.com/b/ie/archive/2010/04/14/same-markup-writing-cross-browser-code.aspx
http://developer.yahoo.com/yui/articles/gbs/
http://en.wikipedia.org/wiki/Unobtrusive_JavaScript
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://share.ez.no/

 8 Cloning eZ Publish
Using command line, go to the place you want to checkout eZ Publish in, for instance the localhost / www
folder that your web server points to, to be able to execute eZ Publish directly for testing.
At this point there are two options:

Cloning read-only
Only do a clone of eZ Publish to track development, get source, potentially create patches and test (optionally
specifying target <folder_name>):
$ git clone git://github.com/ezsystems/ezpublish.git [<folder_name>]
$ cd [ezpublish|<folder_name>]

After that keeping your checkout up-to-date is a matter of:
$ git pull

If you want to checkout other branches than master, try to use the same name as remote branch to avoid
issues when you later try to push changes somewhere.
eg. when you start following a branch (track):
$ git checkout -b stable-4.2 origin/stable-4.2

eg. When later checking out a local branch:
$ git checkout stable-4.2

Cloning with write access on Fork
If you are an external contributor that would like to make changes to eZ Publish and share it on github using
the fork you created in “Forking eZ Publish” (optionally specifying target <folder_name>, and <user> as your
github account alias):
$ git clone git@github.com:<user>/ezpublish.git [<folder_name>]
$ cd [ezpublish|<folder_name>]

Now we need to add ezsystems as an additional read only remote location, in the following code examples we
call it ‘upstream’:
$ git remote add upstream git://github.com/ezsystems/ezpublish.git
$ git fetch upstream

Optionally we make master branch track upstream, making it easier to pull in changes:
$ git config branch.master.remote upstream

After that keeping your checkout up to date is a matter of:
$ git pull

7 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
https://docs.google.com/a/ez.no/document/d/19FaEnXHSkB4Zl6np-hIag_oTB_VTg3DdvLfcqY1i2w4/edit?hl=en&authkey=CIahupMG
https://docs.google.com/a/ez.no/document/d/19FaEnXHSkB4Zl6np-hIag_oTB_VTg3DdvLfcqY1i2w4/edit?hl=en&authkey=CIahupMG
http://share.ez.no/

If you want to checkout other branches than master, try to use the same name as remote branch to avoid
issues when you later try to push changes.
eg. when you start following a branch (track):
$ git checkout -b stable-4.2 upstream/stable-4.2

eg. When later checking out a local branch:
$ git checkout stable-4.2

If you don’t want to make any changes to the code, you’re done! Just point your browser to
http://localhost/[ezpublish|<folder_name>]/ and you should get the setup wizard straight away given that you
cloned eZ Publish lies into your www dir. No worries though, git folders are self contained so you can move it
around as you wish (the whole cloned folder, not it’s sub-folders).

 9 Working with topic branches
A topic branch is a branch specifically created for an issue or a collection of related issues, or even a new
feature. From a SVN background this might sound crazy. But with GIT branching is cheap and makes the whole
process simpler, retains history and allows online reviews on github. Here is how to create the topic-branch:

Checkout
1. If you haven't created topic branch yet:

$ git checkout -b <topic-branch> upstream/master

2. If you already have the branch, but only remotely in your fork:
$ git checkout -b <topic-branch> origin/<topic-branch>

And specify that it should track upstream/master:
$ git config branch.<topic-branch>.remote upstream/master

3. If you have the branch locally already (check with “$ git branch”):
$ git checkout <topic-branch>

Topic branch name should be something that identifies issue, so one or two keywords and issue number
separated by hyphen, eg: rss-nbsp-016953 for “#016953: breaks RSS/ATOM feeds” issue, or if your
going to address a collection of related issues something like eg: rss-improvments. If you are starting a
feature, be explanatory in the name too, yet don’t write your life in it.

8 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://share.ez.no/

Make changes
Make all independent changes one at a time, code should be workable, clean and testable before you go ahead
and push. Meaning no debug code or var_dump calls.
Bug fixing example, full work-flow :

1. Pull in changes using “$ git pull”
2. First add a unit test that triggers the issue and fails

1. commit (see below)
3. Fix the issue

1. commit (see below)
4. Switch from doxygen to phpdoc on the php functions you touch

1. commit (see below)
5. Push (see below)

Commit
If you have added new files, use “$ git add <file>” to stage them for commit.
Then the most common ways to do commits (#B is preferred):

A) Only summary:
$ git commit -am "Fixed #<issue_id>: <issue_title>"

B) With a message:
Useful when you do several commits to same issue / topic and want to add a note on the changes you
do in-between. Also, and most importantly, write why you do the change, especially if there is no issue
that explains the why! Start with the summary as above and add an empty line before the body of the
commit message.
Remember that lines starting with # are treated as comments and will not be part of the commit
message, and please always use utf-8. For more info, see the git user guide
For reviewer / issue-creator / patch-provider credit and attribution follow the svn convention
$ git commit -a

Git will open your default editor to edit commit message, change it to something like this and save +
close (example text):

Fixed #<issue_id>: <issue_title>

Extended signature of function X to allow caller to specify the user
instance instead of only using current logged in user.

Review by: Eagle Eyes
 ar
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
(...)

Note: “Fixed” is used if issue is a bug, if it is an enhancement, use “Implemented”!

9 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://subversion.apache.org/docs/community-guide/conventions.html#crediting
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html#creating-good-commit-messages
http://manual.phpdoc.org/HTMLframesConverter/default/
http://ezpedia.org/ez/testing_ez_publish_test_system
http://share.ez.no/

If you are not confident in your fix then it is better to create a patch and upload it to the issue tracker under the
related issue (cf “Working with GIT patches” a bit below). When uploading your patch, feel free to engage a
conversation around it (adding a comment to your patch upload, simply), explaining why you are not sure about
it, what you would like to clarify, etc.

Push
When you feel confident that you want to share your work with the world, you’ll want to push. But since our
topic branch tracks another branch (probably upstream/master) we should always specify target using:
$ git push origin <topic-branch>

When this is done, git will respond with something like “Your branch is ahead of 'upstream/master' by 1
commit.” basically giving you an idea on how many differences there are between your topic branch and the
branch you track (master). This is also shown when you use “$ git status”.
You may also see statuses like “Your branch .. is ahead .. with 1 commits and behind by 50 commits” meaning
you have 1 commit in your topic branch and 50 new commits in master since you last pulled in changes.

Add comment on issue
Now to make anyone following the issue aware of the fix, add a comment like this on issue in issue tracker
with correct link to the commit :

Fixed in <user> fork:
master(4.5.0alpha3) http://github.com/<user>/ezpublish/commit/<commit_sha>

Pull Request
When you are confident that your contribution is ready for inclusion in eZ Publish, then all you need to do is
click on “Pull request” in the Github GUI on the specific topic branch as selected using the “Switch Branches”
drop-down.

10 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://share.ez.no/

Tagging a “finished” branch (optional)
When work on a branch has concluded, it is a good idea to convert it into a tag, to avoid cluttering up your
branch list with inactive branches, but to still keep track of the changes and commits inside that branch. This
can be done by the following command, when being inside the working directory of your checked out branch:

$ git tag -am “Message describing the tag” <tagname>

Leaving out the last parameter will tell git to point the tag to the latest commit on that branch, which is what
you want in this case. Converting branches to tags, is particularly useful when you are dealing with a form of
old, inactive release branches, where you do want to keep it, but are no longer working actively on it.
If a branch has been merged back to its upstream source, been tagged or both it can be deleted. You
accomplish this by:
$ git -d <branch name>

Note the lower case ‘d’, this is a safety precaution, git will warn you and stop, if it detects that you are trying to
delete a branch which has not yet been merged, or has another ref tracking it (such as a tag). This is for your
benefit, and to make sure that you don’t lose any data.
Following these suggestions you should be able to keep mind and repository clean, but yet keep all history of
your work as you please.

 10 Some notes on rebase
When you work towards one branch it is perfectly fine to use “$ git pull --rebase” before you push to
avoid unneeded merges. But not when you work towards a public topic branch that tracks another branch
(master in the cases described above), as it will rewrite history of your topic branch causing issues for everyone
else who uses it as well as losing relevant history when the topic branch is merged back to master.
So only use it optionally on topic branches before you push the first time, otherwise it’ll do more damage than
good.

 11 Merging an ‘alien’ topic branch
In the following example we merge code from one eZ Publish fork, to our own.
The same approach is used when eZ Engineers merge an external topic branch into eZ Publish, (if Github’s
GUI functionality of directly accepting a pull request is not used).
If not already done, we need to add remote to the fork we want to take a look at.
$ git remote add <user> git://github.com/<user>/ezpublish.git
$ git fetch <user>

Assuming you have already checked out the local branch you would like to merge the changes into using “$
git checkout <branch>” we can now merge the topic branch using:
$ git merge --no-ff <user>/<topic-branch>

11 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://share.ez.no/

 12 Working with GIT patches
There are predominantly two main paths for creating patches in our workflow, not including regular diffs. The
first way, is to use git’s format-patch command. This command will take the commits you specify, and save
them out as mbox compatible files. These files can then be passed on to another developer, or attached the
issue tracker. The good thing about a git patch is that it retains author information, date and commit message
from the original contributor, allowing for a correct attribution of work (git can distinguish between the author
of a patch and its committer). This command has a lot of options, please see the git help, for more details
here.

$ git format-patch <sha1(commit-hash)>

So if you have received a patch, reviewed it, and would like to add it the repository, you can use the am
command. It takes a patch produced with format-patch and commits it to the repository, with all the
information intact, provided the patch still cleanly applies.
$ git am <patch file> [<patch file>] [<patch file>]

 13 Conclusion
You have hopefully now a much better overview of how you can take advantage of git and github, both for eZ
Publish contributions as well as for your own open source code development.
It should once again be noted that this is considered a living document, so things like code standards and
commit conventions might move out to a wiki pages on GitHub later where it can more easily be maintained
and adjusted as we move on.

 14 Resources
If you have questions when it comes to git, first place to look should probably be Github’s FAQ, as it explains
things straight forward and also covers Github-related questions. But for a GIT specific article, be sure to check
out one from A list Apart on the subject which also mentions the most important additional GIT resources like
Git ready, Pro Git and the official documentation. If you are a cheat-sheet addict, check this out :
http://help.github.com/git-cheat-sheets.

If there are any eZ Publish + GIT specific questions, feel free to post below!

12 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://help.github.com/git-cheat-sheets
http://git-scm.com/documentation
http://progit.org/
http://www.gitready.com/
http://www.alistapart.com/articles/get-started-with-git/
http://help.github.com/
http://share.ez.no/

 15 About the authors
Author

• Andre Rømcke - http://share.ez.no/community/profile/9757

Collaborators :

• Ole Marius Smestad - http://share.ez.no/community/profile/9710

• Nicolas Pastorino - http://share.ez.no/community/profile/9804

• Robin Muilwijk - http://share.ez.no/community/profile/10838

 16 License choice

 http://creativecommons.org/licenses/by-sa/3.0

 17 Appendix : GIT/Github jargon

Git terms:
• Clone: Clones a whole repository, giving you access to all it’s branches and tags locally in one folder

(but you’ll need to use checkout to select one at a time).

• Commit: Like in svn, but only done locally. Allows you to commit offline and do several small commits
to simplify reviews

• Push: Push your local commits to a remote repository

• Pull: Like svn up, pulls in changes from a remote repository

• origin: The origin remote server, this refers to the origin remote GIT server you cloned a repository
from, and has nothing to do with forks.

• upstream: And open source term for a third party project your code relies on, in GIT often used for the
original project, the one you forked in case of Github. aka ezystems/ezpublish when dealing with eZ
Publish.

Github terms:
• Fork: Like a copy of a repository with some knowledge of original repository and compare / status

features. To be able to easily share changes you do, as opposed to keeping your changes locally on
custom branches or setting up your own GIT server that contains your changes.

• Pull request: A Github feature, makes it possible to notify the original repository committers about
your branch and ask him to integrate your work in (make sure you comply with CLA / coding standards
before you do)

13 / 13

eZ Community Knowledge Base : http://share.ez.no/learn
http://share.ez.no « The eZ Publish Community Gateway » | contact : community@ez.no

http://share.ez.no/tutorials
http://creativecommons.org/licenses/by-sa/3.0
http://share.ez.no/community/profile/10838
http://share.ez.no/community/profile/9804
http://share.ez.no/community/profile/9710
http://share.ez.no/community/profile/9757
http://share.ez.no/

	 1 Goal description
	 2 Introduction
	 3 Pre-requisites and target population
	 4 The different ways of contributing
	 5 How to collaborate
	CLA / coding standards
	PHP
	Templates
	CSS
	JavaScript
	Browser testing

	 6 Installing GIT and setting-up Github
	 7 “Forking” eZ Publish
	 8 Cloning eZ Publish
	Cloning read-only
	Cloning with write access on Fork

	 9 Working with topic branches
	Checkout
	Make changes
	Commit
	Push
	Add comment on issue
	Pull Request
	Tagging a “finished” branch (optional)

	 10 Some notes on rebase
	 11 Merging an ‘alien’ topic branch
	 12 Working with GIT patches
	 13 Conclusion
	 14 Resources
	 15 About the authors
	 16 License choice
	 17 Appendix : GIT/Github jargon
	Git terms:
	Github terms:

